Chiral polytopes whose smallest regular cover is a polytope

Gabe Cunningham

Wentworth INSTITUTE OF TECHNOLOGY

SICGT 2023

Maniplexes

An n-maniple x^1 is an n-valent connected simple graph, whose nodes we call flags, such that:

- 1. The edges are colored $0, 1, \ldots, n-1$,
- 2. Each flag is incident to one edge of each color,
- 3. If |i-j| > 1, then colors i and j 'commute'. (The edges of colors i and j form 4-cycles.)

¹Steve Wilson, Maniplexes: Part 1: maps, polytopes, symmetry and operators, 2012

Maniplexes, maps, and polytopes

- 1. The flag graph of any polytope or map is a maniplex.
- 2. Every 3-maniplex corresponds to a map on a closed surface.
- 3. An *n*-maniplex is assembled from (n-1)-maniplexes, glued together along isomorphic (n-2)-maniplexes.

Maniplexes, maps, and polytopes

- 1. The flag graph of any polytope or map is a maniplex.
- 2. Every 3-maniplex corresponds to a map on a closed surface.
- 3. An *n*-maniplex is assembled from (n-1)-maniplexes, glued together along isomorphic (n-2)-maniplexes.

The flag graph of $\{4,4\}_{(3,0)}$

Polytopes

An abstract n-polytope is an n-maniplex that satisfies an additional path intersection property²: that for every pair of flags Φ and Ψ , if there is a path between them using colors in [0,j] and a path using colors in [i,n-1], then there is a path that only uses colors in [i,j].

² Jorge Garza-Vargas and Isabel Hubard, *Polytopality of maniplexes*, 2018

Maniplex automorphisms

A maniplex automorphism is a graph automorphism that preserves the edge-labels. We denote the automorphism group by $\Gamma(\mathcal{P})$.

A maniplex is *regular* or *reflexible* if its automorphism group acts transitively on its flags.

A maniplex is *chiral* if the action of the automorphism group on flags has two orbits, such that adjacent flags are always in different orbits.

A maniplex is *chiral* if the action of the automorphism group on flags has two orbits, such that adjacent flags are always in different orbits.

A maniplex is *chiral* if the action of the automorphism group on flags has two orbits, such that adjacent flags are always in different orbits.

A maniplex is *chiral* if the action of the automorphism group on flags has two orbits, such that adjacent flags are always in different orbits.

Facets and vertex-figures

The *facets* of an *n*-maniplex are the connected components after removing all edges of label n. These are (n-1)-maniplexes.

The vertex-figures are the connected components after removing all edges of label 0 and shifting all remaining labels down by 1. These are also (n-1)-maniplexes.

The facets and vertex-figures of a chiral maniplex are either chiral or regular.

Rotation groups

If you pick a *base flag* Φ of a chiral *n*-maniplex, then there are unique automorphisms $\sigma_1, \ldots, \sigma_{n-1}$ such that:

- 1. $\Phi \sigma_i = \Phi^{i,i-1}$ $\Phi \sigma_i = \Phi^{i,i-1}$ $\Phi^{i} \Phi^{i,i-1}$
- 2. $\sigma_1, \ldots, \sigma_{n-1}$ generate the automorphism group,
- 3. For each i < j, these automorphisms satisfy $(\sigma_i \sigma_{i+1} \cdots \sigma_j)^2 = 1$.

We'll call any group $\langle \sigma_1, \dots, \sigma_{n-1} \rangle$ that satisfies the third item above a string rotation group (of rank n).

String *C*⁺-groups

A string rotation group is a *string* C^+ -group if n=2 (and σ_1 is nontrivial) or if:

- 1. $\langle \sigma_1, \dots, \sigma_{n-2} \rangle$ is a string C^+ -group,
- 2. $\langle \sigma_2, \ldots, \sigma_{n-1} \rangle$ is a string C^+ -group, and
- 3. $\langle \sigma_1, \ldots, \sigma_{n-2} \rangle \cap \langle \sigma_2, \ldots, \sigma_{n-1} \rangle = \langle \sigma_2, \ldots, \sigma_{n-2} \rangle$.

String *C*⁺-groups

A string rotation group is a *string* C^+ -group if n=2 (and σ_1 is nontrivial) or if:

- 1. $\langle \sigma_1, \ldots, \sigma_{n-2} \rangle$ is a string C^+ -group,
- 2. $\langle \sigma_2, \ldots, \sigma_{n-1} \rangle$ is a string C^+ -group, and
- 3. $\langle \sigma_1, \ldots, \sigma_{n-2} \rangle \cap \langle \sigma_2, \ldots, \sigma_{n-1} \rangle = \langle \sigma_2, \ldots, \sigma_{n-2} \rangle$.

If \mathcal{P} is a chiral *polytope*, then its automorphism group is a string C^+ -group.

Groups of chiral polytopes

We can build a polytope from a string C^+ -group; it might be regular or chiral. It will be chiral if and only if there is no group automorphism that sends σ_1 to σ_1^{-1} and σ_2 to $\sigma_1^2\sigma_2$ while fixing every other σ_i .

(These transformations come from looking at the action of the automorphism group on the second flag orbit.)

Example: $\{4,4\}_{(2,1)}$

The automorphism group is

$$\langle \sigma_1, \sigma_2 \mid \sigma_1^4 = \sigma_2^4 = (\sigma_1 \sigma_2)^2 = (\sigma_2^{-1} \sigma_1)^2 (\sigma_2 \sigma_1^{-1}) = 1 \rangle.$$

From the group, we know that this is chiral because there is no group automorphism that sends σ_1 to σ_1^{-1} and σ_2 to σ_2^{-1} .

Smallest regular covers

Every chiral polytope ${\cal P}$ has a unique smallest regular maniplex that covers it. Here is one way to build it:

- 1. Start with $\Gamma(\mathcal{P}) = \langle \sigma_1, \dots, \sigma_{n-1} \rangle$
- 2. Find the group $\Gamma(\overline{\mathcal{P}}) = \langle \sigma'_1, \dots, \sigma'_{n-1} \rangle$, whose presentation is obtained from $\Gamma(\mathcal{P})$ by changing σ_1 to $(\sigma'_1)^{-1}$, changing σ_2 to $(\sigma'_1)^2 \sigma'_2$, and changing σ_i to σ'_i for $i \geq 3$.
- 3. Then take their parallel product³:

$$\langle \alpha_1, \ldots, \alpha_{n-1} \rangle \leq \Gamma(\mathcal{P}) \times \Gamma(\overline{\mathcal{P}}),$$

where $\alpha_i = (\sigma_i, \sigma'_i)$.

The result is a 'regular' rotation group.

³Steve Wilson, Parallel products in groups and maps, 1994

When is the smallest regular cover a polytope?

Theorem (Monson, Pellicer, and Williams 2014)

If the facets and/or vertex-figures of the chiral polytope $\mathcal P$ are regular, then the smallest regular cover of $\mathcal P$ is a polytope.

When is the smallest regular cover a polytope?

Theorem (Monson, Pellicer, and Williams 2014)

If the facets and/or vertex-figures of the chiral polytope $\mathcal P$ are regular, then the smallest regular cover of $\mathcal P$ is a polytope.

Are there examples of chiral polytopes where the smallest regular cover is not a polytope?

The smallest rank 4 example

$$\langle \sigma_1, \sigma_2, \sigma_3 \mid \sigma_1^6 = \sigma_2^9 = \sigma_3^6 = (\sigma_1 \sigma_2)^2 = (\sigma_2 \sigma_3)^2 = (\sigma_1 \sigma_2 \sigma_3)^2 = 1,$$

 $\sigma_2 \sigma_1^2 = \sigma_1^2 \sigma_2^4, \sigma_3^2 \sigma_2 = \sigma_2^4 \sigma_3^2 \rangle.$

Here it is in the GAP package RAMP (developed with Mark Mixer and Gordon Williams):

```
gap> P := RotaryManiplex([6.9.6]. "s2 s1^{1}2 = s1^{1}2 s2^{1}4. s3^{1}2 s2 = s2^{1}4 s3^{1}2"):
RotaryManiplex([ 6, 9, 6 ], "s2 s1^2 = s1^2 s2^4, s3^2 s2 = s2^4 s3^2")
gap> IsPolytopal(P);
true
gap> NumberOfFlags(P);
648
gap> R := SmallestReflexibleCover(P):
reflexible 4-maniplex
gap> NumberOfFlags(R);
1944
gap> IsPolytopal(R);
false
gap> L := SmallChiral4Polytopes([1..647]);;
gap> Size(L);
gap> ForAny(L, M -> not(IsPolytopal(SmallestReflexibleCover(M))));
false
```

5 families of examples

$\{p,q,r\}$	$\sigma_2^{-1}\sigma_1$	$\sigma_2 \sigma_1^{-1}$	$\sigma_3^{-1}\sigma_2$	$\sigma_3 \sigma_2^{-1}$	Notes
$\{2m, m^{\alpha}, 2m\}$	$\sigma_1^3\sigma_2^{1+km^{\alpha-1}}$	$\sigma_1^{-3}\sigma_2^{-1+km^{\alpha-1}}$	$\sigma_2^{-1+km^{\alpha-1}}\sigma_3^{-3}$	$\sigma_2^{1+km^{\alpha-1}}\sigma_3^3$	m odd prime, $\alpha \ge 2$, $1 \le k \le m-1$
$\{8, 2^{\beta}, 8\}$	$\sigma_1^3 \sigma_2^{1+\epsilon_1 2^{\beta-2}}$	$\sigma_1^{-3}\sigma_2^{-1+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{-1+\epsilon_2 2^{\beta-2}} \sigma_3^{-3}$	$\sigma_2^{1+\epsilon_2 2^{\beta-2}} \sigma_3^3$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$
$\{2^{\beta-1},2^{\beta},2^{\beta-1}\}$	$\sigma_1^{-1+2^{\beta-2}}\sigma_2^{-3+\epsilon_1 2^{\beta-2}}$	$\sigma_1^{1+2^{\beta-2}}\sigma_2^{3+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{3+\epsilon_2 2^{\beta-2}} \sigma_3^{1+2^{\beta-2}}$	$\sigma_2^{-3+\epsilon_2 2^{\beta-2}} \sigma_3^{-1+2^{\beta-2}}$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$
$\{8,2^{\beta},2^{\beta-1}\}$		$\sigma_1^{-3}\sigma_2^{-1+\epsilon_12^{\beta-2}}$	$\sigma_2^{3+\epsilon_2 2^{\beta-2}} \sigma_3^{1+2^{\beta-2}}$	$\sigma_2^{-3+\epsilon_2 2^{\beta-2}} \sigma_3^{-1+2^{\beta-2}}$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$
$\{2^{\beta-1},2^{\beta},8\}$	$\sigma_1^{-1+2^{\beta-2}}\sigma_2^{-3+\epsilon_1 2^{\beta-2}}$	$\sigma_1^{1+2^{\beta-2}}\sigma_2^{3+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{-1+\epsilon_2 2^{\beta-2}} \sigma_3^{-3}$	$\sigma_2^{1+\epsilon_2 2^{\beta-2}} \sigma_3^3$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$

⁴Gabe Cunningham and Daniel Pellicer, *Tight chiral polytopes*, 2021

5 families of examples

$\{p,q,r\}$	$\sigma_2^{-1}\sigma_1$	$\sigma_2 \sigma_1^{-1}$	$\sigma_3^{-1}\sigma_2$	$\sigma_3 \sigma_2^{-1}$	Notes
$\{2m, m^{\alpha}, 2m\}$	$\sigma_1^3\sigma_2^{1+km^{\alpha-1}}$	$\sigma_1^{-3}\sigma_2^{-1+km^{\alpha-1}}$	$\sigma_2^{-1+km^{\alpha-1}}\sigma_3^{-3}$	$\sigma_2^{1+km^{\alpha-1}}\sigma_3^3$	m odd prime, $\alpha \ge 2$, $1 \le k \le m - 1$
$\{8, 2^{\beta}, 8\}$	$\sigma_1^3 \sigma_2^{1+\epsilon_1 2^{\beta-2}}$	$\sigma_1^{-3}\sigma_2^{-1+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{-1+\epsilon_2 2^{\beta-2}} \sigma_3^{-3}$	$\sigma_2^{1+\epsilon_2 2^{\beta-2}} \sigma_3^3$	$\beta \geq 5$, ϵ_1 , $\epsilon_2 = \pm 1$
$\{2^{\beta-1},2^{\beta},2^{\beta-1}\}$	$\sigma_1^{-1+2^{\beta-2}}\sigma_2^{-3+\epsilon_12^{\beta-2}}$	$\sigma_1^{1+2^{\beta-2}}\sigma_2^{3+\epsilon_12^{\beta-2}}$	$\sigma_2^{3+\epsilon_2 2^{\beta-2}} \sigma_3^{1+2^{\beta-2}}$	$\sigma_2^{-3+\epsilon_2 2^{\beta-2}} \sigma_3^{-1+2^{\beta-2}}$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$
$\{8,2^{\beta},2^{\beta-1}\}$	$\sigma_1^3 \sigma_2^{1+\epsilon_1 2^{\beta-2}}$	$\sigma_1^{-3}\sigma_2^{-1+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{3+\epsilon_2 2^{\beta-2}} \sigma_3^{1+2^{\beta-2}}$	$\sigma_2^{-3+\epsilon_2 2^{\beta-2}} \sigma_3^{-1+2^{\beta-2}}$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$
$\{2^{\beta-1}, 2^{\beta}, 8\}$	$\sigma_1^{-1+2^{\beta-2}}\sigma_2^{-3+\epsilon_12^{\beta-2}}$	$\sigma_1^{1+2^{\beta-2}}\sigma_2^{3+\epsilon_1 2^{\beta-2}}$	$\sigma_2^{-1+\epsilon_2 2^{\beta-2}} \sigma_3^{-3}$	$\sigma_2^{1+\epsilon_2 2^{\beta-2}} \sigma_3^3$	$\beta \geq 5, \epsilon_1, \epsilon_2 = \pm 1$

(But how do I know that these are all examples?...)⁴

⁴Gabe Cunningham and Daniel Pellicer, Tight chiral polytopes, 2021

Chirality groups

Each chiral polytope also has a unique largest regular quotient. The chirality $group^5$ of \mathcal{P} , denoted $X(\mathcal{P})$, is the kernel of that projection.

⁵Antonio Breda D'Azevedo, Gareth Jones, Roman Nedela, and Martin Škoviera, *Chirality groups of maps and hypermaps*, 2009

Chirality groups

Each chiral polytope also has a unique largest regular quotient. The chirality $group^5$ of \mathcal{P} , denoted $X(\mathcal{P})$, is the kernel of that projection.

Example: The chirality group of $\{4,4\}_{(2,1)}$ is cyclic of order 5, generated by $\sigma_2^{-1}\sigma_1$.

⁵Antonio Breda D'Azevedo, Gareth Jones, Roman Nedela, and Martin Škoviera, Chirality groups of maps and hypermaps, 2009

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral 4-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K})$ and $X(\mathcal{L})$ have trivial intersection when considered as subgroups of $\Gamma(\mathcal{P})$.

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral 4-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K})$ and $X(\mathcal{L})$ have trivial intersection when considered as subgroups of $\Gamma(\mathcal{P})$.

Note that $X(\mathcal{K}) \leq \langle \sigma_1, \sigma_2 \rangle$ and $X(\mathcal{L}) \leq \langle \sigma_2, \sigma_3 \rangle$, and so if $X(\mathcal{K}) \cap X(\mathcal{L})$ is nontrivial, then it is contained in $\langle \sigma_2 \rangle$. So:

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral 4-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K})$ and $X(\mathcal{L})$ have trivial intersection when considered as subgroups of $\Gamma(\mathcal{P})$.

Note that $X(\mathcal{K}) \leq \langle \sigma_1, \sigma_2 \rangle$ and $X(\mathcal{L}) \leq \langle \sigma_2, \sigma_3 \rangle$, and so if $X(\mathcal{K}) \cap X(\mathcal{L})$ is nontrivial, then it is contained in $\langle \sigma_2 \rangle$. So:

Corollary

If K is a chiral polyhedron such that X(K) has trivial intersection with $\langle \sigma_2 \rangle$, then every chiral 4-polytope with facets isomorphic to K has a polytopal smallest regular cover.

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral 4-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K})$ and $X(\mathcal{L})$ have trivial intersection when considered as subgroups of $\Gamma(\mathcal{P})$.

Note that $X(\mathcal{K}) \leq \langle \sigma_1, \sigma_2 \rangle$ and $X(\mathcal{L}) \leq \langle \sigma_2, \sigma_3 \rangle$, and so if $X(\mathcal{K}) \cap X(\mathcal{L})$ is nontrivial, then it is contained in $\langle \sigma_2 \rangle$. So:

Corollary

If K is a chiral polyhedron such that X(K) has trivial intersection with $\langle \sigma_2 \rangle$, then every chiral 4-polytope with facets isomorphic to K has a polytopal smallest regular cover.

Example: All chiral 4-polytopes with facets isomorphic to $\{4,4\}_{(2,1)}$ have a polytopal smallest regular cover.

General rank

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral n-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Let \mathcal{M} be the vertex-figures of \mathcal{K} (= the facets of \mathcal{L}). Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K}) \cap X(\mathcal{L}) \leq X(\mathcal{M})$, when considered as subgroups of $\Gamma(\mathcal{P})$.

General rank

Theorem (C., 2023)

Suppose that \mathcal{P} is a chiral n-polytope with chiral facets \mathcal{K} and chiral vertex-figures \mathcal{L} . Let \mathcal{M} be the vertex-figures of \mathcal{K} (= the facets of \mathcal{L}). Then the smallest regular cover of \mathcal{P} is a polytope if and only if $X(\mathcal{K}) \cap X(\mathcal{L}) \leq X(\mathcal{M})$, when considered as subgroups of $\Gamma(\mathcal{P})$.

Corollary

If K is a chiral (n-1)-polytope such that X(K) has trivial intersection with $\langle \sigma_2, \ldots, \sigma_{n-1} \rangle$, then every chiral n-polytope with facets isomorphic to K has a polytopal smallest regular cover.

Thank you!

Totally chiral polytopes

A polytope is called *totally chiral* if $X(\mathcal{P}) = \Gamma(\mathcal{P})$.

Totally chiral polytopes

A polytope is called *totally chiral* if $X(\mathcal{P}) = \Gamma(\mathcal{P})$.

Example: Any chiral polytope with a simple automorphism group.

Totally chiral polytopes

A polytope is called *totally chiral* if $X(\mathcal{P}) = \Gamma(\mathcal{P})$.

Example: Any chiral polytope with a simple automorphism group.

Corollary

If $\mathcal P$ is a chiral polytope with totally chiral facets and vertex-figures, then its smallest regular cover is a polytope if and only if the vertex-figures of the facets of $\mathcal P$ are also totally chiral.